The trapezoid rule
Let's consider the integral (2) representing, as is known, area under a curve
Fig. 1. Geometrical representation of numerical integration
Let's break now interval of integration (
a
,
b
) to
n
equal parts in length
Fig. 2. One interval of numerical integration by trapezoid method
The area under a curve
Let's assume, that the step of integration
h
is small enough then this area without an essential error can be equated to the area of trapezoid
ABCD
. As
As integral from sum is equal to sum of integrals (property of additivity ), then
where
Substituting (3) in (4), we’ll finally receive [3, 4]:
It also is the formula of trapezes . The trapezoid rule – one of elementary methods of numerical integration and though an error of calculations in this way has more, than in other methods, it is in great demand owing to its presentation and simplicity. |